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NATTONAT. ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

APPLICATION OF WING-BODY THECRY TO DRAG REDUCTION
AT TOW SUPERSONIC SPEEDS

By Barrett S. Baldwin, Jr., and Robert R. Dickey
SUMMARY

A method is developed for extending to higher Mach numbers the region
of low drag attaslinsble for wing-body combinations by the use of the tran-~
sonic area rule. It is found that to a good epproximation, the drag
depends only upon the longitudinsel distributions of area and moments of
area about the verticel plane of symmetry parallel to the free-stresm
dilrection. The essential requirement of the method 1s that the longi-
tudinal development of the moments of srea be smooth and gradus].

Results of an experimental investigation conducted in the Ames 2- by
2-foot transonlc wind tunnel to test the theory are presented. The
results in essence confirm the predictions of the theory in that the zero-
117t wave drag of a wing-body configuration over a range of low supersonic
Mach numbers as well as st sonic speed 1s reduced when auxiliary bodies
are mounted on the wing.

INTRODUCTION

R. T. Jones has expressed the theory of wing-body wave drag at super-
sonic speeds in & form whilch 1llustrates the dependence of the drag upon
the longltudinal distributions of the cross-sectional ereas of the complete
configuration intercepted by planes inclined at the Mach angle of the flow
(see ref. 1). The derivation contains as a special case for a Mach number
of one the transonic area rule introduced by Whitcomb (ref. 2) wherein the
intercepting planes are normal to the longitudinal axis of the configura-
tion. It was concluded in reference 1 that the modification of a wing-body
combination in sccordance with the transonic area rule would generslly be
expected to result in drag reductians at near sonic speeds; however, it
was polnted out that, at higher supersonic Mach numbers, this modification
would sometimes result in drsgs greater than that of the original config-
uration. In reference 1 a method for contouring the fuselage of a wing-
body combination was presented whilch achieved drag reductlions at particular
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supersonic design Mach numbers, but only at the expense of increasing the
sonic-speed drag compared with that of the correspondling transonic-area-
rule configuration. Thus, it appears that the methods for minimizing wave
drag described in references 1l and 2, which are both based on the longi-
tudinal distributions of cross-sectional ares, are effective for only a
limited Mach number range. '

In the present paper, Jones' generalized zero-lift wave-drag formula
is re-examined in an attempt to develop & method for minimlizing the wave
drag of a wing-body combination over a wider range of Mach numbers.

ANALYSIS

Calculation of Zero-Lift Wave Drag

It has been pointed out In reference 1 that the transonic srea rule
was predicted by the linear theory, but was discounted because basic
assumptions of the theory are violated in this application. It has been
suggested by Jonea that other predictions of the linear theory which may
have been overlooked should be gystematized and investigated experimen-
tally. Thus, in the present analysis a possibly unwarranted emphasis is
placed on the formael predictions of the linear theory at Mach numbers near
one.

In reference 3 methods are given for calculating the aerodynamic
forces on airplane configurations utllizing very few assumptions other
than those needed for llnearization. An additionsl approximation is
employed 1n reference 1 to relate the supersonic zero-1lift wave drag of
a wing-body combination to the drags of a series of equivalent bodies of
revolution each of which 1s determined from the cross-sectional areas
intercepted on the configuratlion by a aet of parallel Mach planes. The
result of reference 1 coincides with the more exsct result of reference 3
at sonic speed, and the deviation with increasing Mach pumber 1s expected
to be small in a limited range of Mach numbers ass long as the configura-
tion is a conventional monoplane type.

In the intereat of obtailning a result in terms of famlliar geometric
concepts and to facilitate calculations, the method of reference 1, termed
the "Mach plane method," will be employed here. This approximate theory
greatly simplifies the discussion of gross effects of variations in the
design of wing-body combinations.

As a preface to the development of the method of the present paper
for calculating drag, the Mach plane method will be briefly reviewed.
Symbols are defined in Appendix A.

A
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Mach plane method.- Consider a wing-body combination such as shown
in gketch (&). Let x be the coordinate in the free-stream direction,
y ‘the spanwise coordi-
nate, and 2z the remain- 2
ing Cartesian coordinate | e
in the thickness direc-
tion, with the origin at
the center of the body. b AN

A Mach plane can be
defined as a plane with
ite normal at an angle
of tan-1(1/p) to the x
axis. Let (x!,B,p) denote
the Mach plasne which inter~
sects the x axis at x! ~
and has the projection of
its normal on the ¥z

plene at an angle @ to I
the y axia. Let
s(x",B,0) be the area of Sketeh (a)

the projection on the y=z

plane of the cross-sectional area intercepted on the configuration by the
Mach plane (x‘,B,m). Then the drag of the configuratlior ls the average
with respect to ¢ of the drags of the equivalent bodies of revolution
defined by the area distributions S(x',B,p).

A method introduced in reference L 1s used in reference 1 to eveluate
the drag of each equlvalent body of revolution. The variable 0 is
deflned by the relstion

x' =L cos @ (1)

vhere 1 1s the length of the equivalent body. Then a smet of quantities
An(B,p) are defined as the coefficlents of sin neé in a Fourier series

ds(x'
expansion of ——gggﬁﬂigl. Consequently the An(B,p) can be determined

from the relation

(o]
An(B,9) = %f os(x',8,9) gin(ng)ds (2)
J x ox!
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Finally, the drag of the configuration is given by

2
D = "1‘;2 i n{An(B,0) 1745 4@ (3)

n=1
Within the framework.of the linear theory this result is valid only for
equivalent bodlies of revoluticn with no dliscontinulties in the gradients
of the area distributions.

It should be noted that unless all parts of the configuration lie
between the nose Mach cone and the forward Mach cone from the tail, the
equivalent body length, 1, will be greater than the sctual body length
in some cases. However, by consideration of stresmwise body extensions
of vanishingly small cross-sectional area, 1t can be seen that a constant
velue of 1 equal to or greater than the length of the longest equivalent
body can be used in equation (1).

Series-expansion method.- In this sectlon the Fourier series coef-
flcients defined in equation (2) wlll each be expanded in a finite series
so that the drag formula cen be expressed as a power series in powers of
B. This manipulation leads to an expression of the drag in terms of a
convenient set of geometric parameters whlch were not apparent in the Mach
plane method.

By the use of equation (1), equation (2) can be written as

22 /2 os(x',B,p) sin(ns)
= - —_ 202 1
An(B,9) = - £ £ = 2l ax
-1/2
or after a paritisl Integration
2 /2
2 2 1 a gin N8 3.1
A =(2) 2 s ax (%)
n(B,Cp) (Z> b4 "/'l. (x ,ﬁ,tp) a x! sin @
- 1/2

provided that égi%éﬁéﬂgl and S(x',8,p) are zero at the nose and tail.t

¥For a practical configuration where the area distribution is not
zero at the tall, the distribution of a Kérman ogive having e base ares
end length equal to that of the configuration under consideration can be
subtracted fram 8S(x',B8,9) so that the resulting equivalent-body area
distributions will be zero at the nosge and tall. The drag due to the
part removed can then be calculated by means of equation (2) rather than
equation (4). The choice of a Karmén area distribution insures that there
will be no interaction drag from the part removed as long as all configu-
ration parts lie withlin the Mach cone from the body nose and within the
forward Mach cone from the tall, as can be sgeen by the use of equa-
tions (2) and (3).
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The second factor of the integrand of equation (4) cen be expanded
xf
- in a finite series of powers of 3—/’2‘ given by

n-z
. a sin nb x'
a Qx‘) sin 6 z Orm <-7-'7—2-> ’ nz2 (5)

172 m=0

where

bnm

o ; R
( 1)( > n+m il for even values (6)

+
n-m-2 tm! of n-m

Lzero for odd values of n -m

-

Substituting equation (5) into (U4) and interchanging the order of
- ) summation and integration yields

An(B,9) = 2‘ bnm() f S(x »8,0)( 1/2 d.x , nx2 (7

-1/=2

At this point, & more explicit expression for S(x',B,cp) in terms of
the configuration geometry is needed for substitution in equation (7).
Let +t(x,y) be the thickness distribution of the configuration including
thet of the body or bodies. It will be assumed that the distance of all
parts from the xy plene is small enough that S(x',8,p) can be approxi-
nmated by

va(x',8 »®)
S(X"B,(p) = t(x, + By cos (P’Y)d}" (8)

Yl(xl ] Br(p)

where y.(x',8,9) and yo(x',B,p) define the edges of the configuration

intercepted by the Mach plane ?x' s850). Equation (8) represents a plenar

approximation. Analogous expressions not involving this aspproximation

can be found and exploited, but only the planar case wlll be discussed in
% this report.



Subetitution of equation (8) into equation (7) yields

An(p,9) = nz bnm() fuz fya(x',ﬁ’m) t(x* + By cos @,¥)dy ({%)m ax', nz2 (9)

m=0 x'=-1/z y=yi(x',8,0)

If it 1s understood that #(x,y) iz zero at pointa off the configuration rather than an analytic
continuation of its form at points on the cdnfiguration, the integrations with respect to x' and
¥ can both be teken from -« to » &#nd the order of integratlon interchenged. In addition, witk
the substitution of - x = x' + By cos @, equation (9) beccmes

(8,0) = Z%m() f [ st (Js_-_ﬂz@ez’u)maxay, nz2 (10)
"y w0 Xmew |

The quantity in parentheses which is raised to the power m can be expanded by the bincmial

theorem into
( - ;cos ) Z (-7 6 (1/2) L 1(}%5 )p -

where

c% ='(£);m (12)

Then substitubing equation (11) into equation (10) ylelds

n-2

An(B:¢)=§:bnm(> f f Z(np () ﬂvl%sw) $x,y)ax dy

m=0 M=o P"'

g
S
k-3
u
=y
o
I—l
\D




Upon interchenge of ordera of integration and summatlon, shortening of the interval of integration,
end sxrbitrary grouping, this becomes

) = D o ) (0P 03 (520 ';‘3; Y@ e 17 e () ()

M=o P=0 x=-1/2 Y“"YB( x)
where Y,(x) and yu(x) define the two edges of the configuration.

The quantity in brackets In equatlon (13) cen be identified as the longitudinal distribution
of the pth moment of area of the configuratlon., This Indicates thet the dvag of the configura-
tion can be expressed entirely in terms of moment distributions (including the srea dilstribution
which correspands to p = 0).

The moment diatributions can be defined am

Yalx)
Mp(x) = f B t{x,¥) yPay (14)
¥=-¥a(x)

Bubstituting this in equation (13) yields

a(0) nnz - Z (wrcad (&) [ Y a(Za) T e ooty (15)

p=0 ~1/2

or interchanging the order of summetions ylelds

n-2 n-2 pe /e -P
An(p,0) = Z (-1)%Pcos®y Z Pom O f MP(X)(I/E)
p=0

=p '1/

&

(16)

as the desired expansion of the An(B,p)'s in powers of B.

=
B
2
5
g
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It can be seen in equation (1lL) that if the configuration has span- =
wise symmetry, the odd moment distrlibutions will be identically zero, and
the terms of equation (16) resulting from odd values of p wlill be zero.
With streamwise symmetry of the moment distributions In addition, the odd
values of n and m would be eliminated. '

In the process of substituting equation (16) into Jones' drag equa-
tion, 1t 1is convenlent to define several new symbols.

Let S . ) o —
-2 p+2 /2 -p :
Z' bnm C () j p( x| =2 7’/2 dx (17)
m=p
80 that
n-2 . . .- e e e e - — . ————r
aa(8,0) = ) (-1)FaPeos’e Luy (18) .
p=0
Then [An(5,¢)]2 can be writfen as _ : : *;"
n-z2 n-2 i L -
[An(B,9)1% = zz }: (-1)P1¥P2 1py. Inp cos(Pl+P2)(¢)B(Pl+p2)
P1=0 P2=0 '
or y
g-2
2n-4 _. - e = e —
q=° p1=q-n+2
q even - . . L

where the odd values of ¢q are omitted because the terms resuliting from
gsuch values would not contribute to the dreg.

In addition to Ipp of equation (17), there are several other
quantitles depending upon Ipp which are notational aids. Let

X 2 (20) *
nqg = (Ln,-g) x
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and g-2
=
Ing = 2 Z Inpy In(q-pi) (21)

Pi=q-0+2
Then

2n-4
[An(B,CP) ]2 = z (qu + Inq)cos%ﬁq (22)

g=o0
q even

Substituting this in equation (3) ylelds

25
D = QVZ Z Z (qu_ + Inq_) COSq-CPBq-d.CP

q even

or, 1f it is assumed that the series may be integrated term-by-term, this
becomes

&« 2Nn-~-4

D= “pgz z n Z (Nng + Ing) TgBY (23)
D=2 g=0
q even

Wwhere

Jq = -21; \'é‘ cosp do = ;{é—l:r, q even (2k)

Interchanging the order of summations In equation (23) results in

o 0

- . .
D = ﬂgv E _Jqﬁq E n(qu + In_q_) (25)
=0 _gt4
. n_.g.é_
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Let Nq be the quantity derived from Npgq by

23

Ng = Z n Nng (26)
+4
=32
and define Iq aB
oo
Igq = E: n Inqg (21
+6
n=d32

Then substituting these in equation (25) yields

0
T 2
D = %- To(Nq + Ig)pe (28)
q=0
q even

as the desired expansion of the supersonic zero-lift drag formula in
powers of B.

From the foregoing, it 1s seen that each Ngq depends only upon the
longitudinal distribution of the moment of area of order g/2, whereas
each Ig depends on all moment distributions of order zero to [(q/a) -1].
Thus, each Ng representa a contribution to the drag from the moment dis-~
tribution of order q/2 alore, and each Iq represents a contribution
resulting from the interaction of the first [(q/2) - 1] moment distribu-
tions.

Aithough the question of convergence of the series of the foregoing
analysis has not been investigated in detall, several observatlions and
practical hints for celculation can be offered.

The values of each An(B,¢) obtalned by the series-expansion method
are identical to those obtained by the Mach plane method. Therefore, 1if
it is assumed that the drag of a conflguration can be calculated with suf-
ficient accuracy by using the first N +terms of the Mach plane method, it
follows that the interchange in order of summetions by which equation (25)
is derived from equation (23) i1s valid for these terms.

In the Fourler series analysis of JS(x',8,9)/dx' in the Mach plane
method, it is evident that the higher harmonics will be suppressed if the

gty

Rl
M

P g
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smallest allowed value of 1 1s used rather than s large value. Conse-
quently, the convergence of both the Mach plane and series-expansion
methods is best when the smallest allowed value of 1 1s used in equa-
tions (1) and (17). In either method the number of terms required to
obtain the major part of the drag can be held to a minimum, and +the
mathematical calculations thereby faclilitated, by dividing the configura-
tion under comsideration into a short part and a long part. The quanti-
ties An(B,@) of the complete configurstion are the sums of the corre-
sponding quantities of the separate short and long parts as given by the
relation

An(B,9) = Agn(B,®) + Arn(B,o) (29)

where the subscript S 1is used to denote short part and I long part.
Then [An(B,p)]1® 1= given by

[8n(B,9) 12 = [Asn(B,9) 1% + 285n(B,9)A1n(B,9) + [Arn(B,9)1% (30)

When this expression 1s substituted in equation (3) 1t is seen that the
[Asn(B,®)12 will yield the drag of the short part alone, [Arn(B,9)1Z

the drag of the long part alone, and 2Agn(B,p)Ar,(B,p) the interaction
between the short end long parts. Then a smaller value of 1 can be
used to calculate the drag of the short part alone. Although no reduc-
tion in the value of 1 1is possible for the other two parts of the drag,
the convergence 1s improved becsuse of the absence of the high harmonic
content of the short part from Ar,(B,0).

The number of terms to be included In the drag formula will depend
upon the relative importance of accuracy and simplicity. In the search
for low-drag design crlterle, a very small number of terms might be
appropriate. As an example of the meaning of this remark, it can be seen
that only two terms need be considered to arrive at the supposition that
the Sears-Haack area distribution is an optimum for given length and
volume. Only one term is needed to caonclude that the fineness ratio of
2 body should be as large as possible when the pressure drag alone is
congidered.

A Method for Reducing Drag

The general problem which will be considered in this section is that
of designing a wing-body combination with low drag in a range of super-
sonic Mach numbers when certain bhasic parameters, such as total volume,
ere gpecified. In order to obtain definite answers, many additional
parameters such ag those involved in the speclfication of the wing plan
form must be assigned arblirarily. For example, the wing can be chosen

il

o e
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arbitrarily, and the optimumm body shape for minimum zero-lift wave drag i
at a specifled Mach number can be found by methods described 1n refer- .

ence 1.

IT the number of parameters affecting the drag is small, as 1s the
case when the transonic area rule i1s valid, the general problem of drag
. minimization 1s greatly simplified. The serles-expansion drag formula of -
the present analysis 1s also expressed in terms of a small number of
parameters if the higher powers of B can be neglected or 1f the summa-
tions over n can be cut off at a smell number. Because of the resulting s
slmplificatlion it has been found that the minimization procedure employed :
in reference % can be used to design an optimm wing-body comblnatiom .
with minimum drag at s Mach number of one and minimum drag rise at low
supersonic speeds. As a first application of the foregoing analysis this
procedure wilill be.described and exploited. The validity of the result is
subject to some question because the basic assumptions of the linear theory
are violated at Mach numbers neer ocne. However, the results are of inter-
est in the absence of a method for applying a more exact theory.

For the ordinary case of spanwise symmetry, equation (28} can be - )
written as '

D = ﬁizz [No + % I-82 + g (Mg + I,)B% + %% Is8° +
by
iﬁi.( 8 (pio :
=5 (Ng + Ig)8° + 0(p*°) (31)

In the speed asnd aspect-ratio range where $2 eapnd higher powers of
B can be neglected, the drag depends only upon the area distribution,
since this is the anly feature of the geometry affecting No. It can be
agsumed that the geometry wlll be such that the higher powers of 8
should be taken into account successlvely as the value of B 1s increased.
Then in the speed range where powers of P greater than two can be neg-
lected, the drag depends only on the ares distribubtion and the second-
moment-of-area distribution, since these two determine the value of Iy,
As successlvely higher powers of B are taken intc acecount, correspond-
ingly higher ordered moment distributions are involved.

The following procedure is proposed for reducing the wave drag of a
wing-body configuration: B

1. Minimize the drag at a Mach number of one by exclusive abtention
to the area distribution. ’

2. Minimlze the drag at slightly higher Mach numbers by exclusive
attention to the second-moment~of-area distribution excluding »
any changes which would alter the sarea distribution.
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3. Continue to £ind the optlimum higher ordered moment distributions
succesalvely without disturbing the lower distributions in
thelr previously derived optimm forms.

This procedure leads to a unigue set of moment distributions.

Substituting equation (20) into (26) with ¢ = 0 yields
o0

No = Z n (Ino)® . (32

n=2

From equation (1) with p = 0, the volume of the configuration, Vo, is
identified as

1/2
Vo= [ Molx)ax (33)
-1/2
By the use of equation (17) with n = 2 and p = O, the Pirst term of
equation (32) is found to be proportional to (V0/225 Then, since all

the terms of equation (32) are positive, Ny is a minimum for given
values of Vg and 1 1f |

Ino = O for n {2 (34)

To satisfy equation (34) and similer equations which will occur, a

rearrangement of equation (17) is needed. When the integral asnd sum of
this equation are reversed to obtain

n-2

P2 1/2 al x mn-p
Q) [ Tmw | ) mE ()
-l/2 m=p :
the quantity in breckets cen be identified as — sin b ‘
pi jf+l sin 6
d(z/e

with the aid of equations (5) and (12) so that

. <- p+2 Z/z Mp(x) aP**  sin ng
1

p! P+1 sin @
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Then after (p+l) partial integrations this beccmes

1/2 p+1 “
22 dP+t Mp(x)
Inp = = = Jf [ oI —P' } Bin 06 4, (35)
L1)2 dx p! ein @ .
provided that 3
—~
a8y () a(P-a)  gin e || )
x \d P x \P-a¢ sin 6
{i7) 72
. x=1/2
-3 mp(x) a(P-®)  sin no |\ =0 (36)
d( x )q_ d( P-4 gin @
1./2 1/2 J x=-1/2 .

for all integer values of q from zero to p. Equation (36) is satis-
fied if Mp(x) and the first p derivatives of Mp(x) are zeroc at .-

= x1/2.

It follows from equation (35) with p = O that equation (34) is

satisfled by
Mo _ 1_.81n(28) = -2Lo5( = 1 - (% 3
ax 20 20 1/2 2/2

By integration and use of the fact that the configuration does not extend
beyond x = *1/2, this becomes

273/ 2
ol = 3100 [1 - (5]

For purposes of evaluating the drag, thls area distribution can be put in

the form
Mo(x) = Mo(o) [1 - <?§E;f]3/2 }

(37)

(38)

(39)
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where Mg(o) 1s the maximum velue of the distribution. Then

Lo = 3 olo) (40)
rand
_ 9=x Mo(0) T2
D = T QV2 [ 7 ] (,'['1)

1s obtained as the drag of the optimum configuration in the speed range

where B can be neglected. Equations (39) and (k1) are in agreement
with the results of references L and 5.

By substitution of equation (3U4) into equations (21) and (27), it
ig found that I, end I, will be zero for a configuration with the opti-
mum area distribution and all other Ig's will be independent of the
area distribution. In that case equation (31) becomes

D =’£¥ 18 [M°§°)]2 + B NB + 2 TapS +

% (Ng + Ig)8° + O(Blo)} (42)

In minimizing WN,, 1t can be assumed that the second-moment distri-
bution of the body is negligible so that 1 can be replaced by 115, the
wing length. More exactly, 15 1is the length of the projection of the
wing on the body exis. Substituting equation (20) into (26) with q =k,

yields
N, = nz; n (1'112) (43)

The second-moment volume of the configuration can be defined as

lof2
Vs = f = Mo(x) dx (hk)

~lp/2
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By the use of equation (17) with = 2, the first term of equation (%3)

is found to be proportional %o [Vg/(z }412. Then since all terms of egqua~-
tion (L43) are positive, N, 1s a minimum for given values of Vp and Ip -
if C

Ine=0 for n#h (45) .

It follows from equation ( 35) with p = 2 that this requirement 1s met by
setting

Es_ﬁxagj‘_) = Loosin(40) (46)

By triple integration and use of the sufficient requirement of equa-
tion (36) that Mo(x) and the first two derivatives of Mz(x) be zero at
= £1p/2, this becomes . .. ... .. ) . o

1 T/2
() = g (1% e [1 - (725 2/2) ] (47)
or S —
x 2 7/2
Mz(x) = MZ(O)[l - <%;7é> ] (hS)
is obtained as the optimum second~-moment distribution. Then
Mo( o)
L4 = 105 — S (49)
(12)

and by substitution of this in equations (42) and (43), the expression :

pV2 My(0) 72 Ma(0) 12,8 _
D= 5-8— 18 [ Oz ] + 16537.5 [i—z)—a-:] p } (50)

is obtained as the drag of a wing-body coambinatlon for which the dilstri- -
butions of erea and second moment of areas sre optimum when powers of 8
greater than four are neglected.

’ -

The foregolng process can be continued indefinltely untlil e complete
set of optimum moment distributions is obtained. The results are .
o =
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- Mo (x) = Mp(o) [1 - (-[é‘/—é>2T+( */2) (51)
- where
lo=1
lp=1z for p>2 g/

and the drag of such a configurstion is given by

_ xpy2 N [{ep) t13(2p+3) 2(ep+1)2 | Mp(oa)
D= 8 Z (pt)%(pro) 2(2p-2) (1p)PHt (52)
p=o
o= P even

Since all the terms of equation (52) are positive s this drag and the
corresponding drag coefficlent must increase monotonically with increasing
Mach number. Alsc since all the terms are positive it can be seen from
the first two terms that the drag will be very large at

B® = % (53)

Equation (53) can be used. to estimste the upper 1limit of the Mach number
range of applicability of the foregoing low supersonic technique for drag
reduction. '

It is interesting to note that a configuration designed according to
equation (51) would have large drag at the higher Mach numbers as & con-
sequence of eliminating the drag components due to interactions of the
moment distributions. Although the drag due to each moment distribution
alone must be positive, the Interactlon drags can be negative. The inter-
sctlon drags which would be beneficiazl in a2 given Mach number increment

- were eliminated in the process of minimizing the drag at lower Mach num-
bers.
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APPLICATIONS AND DISCUSSION

Design of Configuration for Low Drag

In the "ANALYSIS" section, it has been shown that the wave-drag
formula can be expanded 1n a power series of the Fform

D=8y +asB%+ayups+, .. (54)

where the constants ag,ap,8¢, and so forth, are independent of Mach number
and are determined only from the geometry of the configuration. In this
section, the physical significance of these constants will be discussed and
gome examples presented of the practical means available for minimizing the
constants in order to reduce the drag of wing-body combinations at low
supersonlc speeds as well as at Mach number one.

The detalls of the procedure for deriving the constants fram the
geometry using a plapar approximation are contained in the "ANALYSIS"
section end in Appendix B. Equations (17), (20), (21), (26), (27), and
(28) indicate that, in general, mp depends only on the area distribution,
ap depends upon the second-moment-of-area.distribution as well as on the
area distribution, and a4 depends on the fourth-moment-of-area distribu-
tion in addition to the previocus two distributions. Hence 1t 1s seen that
the transonic area rule 1s valild ln the speed range where $ is small sc
that all terms except the first in equation (54) can be neglected. Fur-
thermore, it ls expected that as the Mach mumber is increased, starting
from one, all except the first few terms should remain negligible in a
range of low supersonic Mach numbers so that at these speeds the drag
should depend only upon the area dietrlbution and the second-moment-of-

area distribution.

If the configuration area distribution is made an optimum for minimum
drag at a Mach number of one by the use of the transonlc area rule, the
determination of &85 and a, 1is simplified. In that case ay 1s zero and
a4 depends only on the second-moment-of-area dlstribution. Consequently,
1f the second-moment-of-area distribution can be veriled without changing
the area distribution, the drag at low supersonic speeds can be minimized
with respect to such variations without increasing the sonilc speed drag
which depends only on the ares distribution. In order to see that the
gecond=-moment dlstribution actually can be varied wilthout changing the
area digtribution, definitions of these distributions are needed.

The area digtrlbution 1s glven by

(55)
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where +t(x,y) 1s the thickness distribution of the configuration includ-
ing wing and body, and Y(x) is the value of ¥y at the edge of the plan
form. In this definition spanwise symmetry of the configuration has been
assumed.

The second-moment dilistribution can be spproximated by

Y(x)
M) =2 [ yEsxyay (56)
R(x)

where R(x) is the value of ¥ et the wing-body Jjuncture. Here the
second-moment dlstribution of the body is neglected because of the small
values of y at the body compered with those on the wing. Sinece the body
moments are negligible, changes in the body shape will vary the configura-
tion area distribubtion without altering the second-moment distribution.
Conversely, the second-moment dlstribution cen be altered while holding
the area distribution fixed by varying the wing geometry and the body
shape at the same time.

If the area and second-moment distributions are made optimum, the
drag can still be varied by altering the magnitudes of these diastributions,
as can be seen In the drag formula for such a configuration given by

D=2 wove [b_i_og_z]a + 3395 nov2 [1%%;]2 8% + 0(g®) (57)

where Mo(o) is the meximum value of the area distribution, I is the body
length, My(0) is the maximum velue of the second-moment distribution, and
1> is the wing length.

Neglecting powers of P greater than four in equation (57) provides
an insight into the requlrements for reducing the pressure drag at low
supersonic speeds. The area-rule requirement that the ratio .Mg(o}/T %be
small Indicates that the fineness ratio of the body should be large as
previously noted. Exemination of the quantity Ms(o)/153 lesds to the
conclusion that not only should the thickneas ratio of the wing be small,
but also the thickness ratio should taper to a minimum at the wing tips,
end the ratio of effective streamwlse length to span of the wing should
be large. At higher Mach numbers, where the higher powers of g cannot
be neglected, these conclusions would not apply.

The ratio of effective length to span of a wing cen be increased in
several different ways, for example, by extending the wing chord. However,
large frictional drag penalties are usually assoclated with the inecreased
surface ares accompanying such changes. Another possible method of
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increasing the effective-~length-to-span ratlio of the wing 1s by the addi-

tion of auxiliary bodles of revolution mounted on the wing. This method

has the adventage of relatively small increased surface ares and attendant .-
friction drag. The hodles of revolution are particulerly attractive in

the ceaese of wing-body configurations of relatively large wing span where
application of the transonic area rule could be expected to produce drag .
penalties in the low supersonic. speed region. i

As an 1llustration of the application of the drag-reductlon proce- .
dure, hereinafter referred to as the "moment-of-asres rule" as distin-
guished from Whitcomb's ares rule, consider the wing-body combination
shown in the upper part of sketeh (b). This configuration consists of a

actual distribution

-------- optimum distribution
? Mo(x) Ma(x)
N :
e —— x A )
\V ~
i X x T
y Mo(x)
:j#;:if>‘_:3
__< X
/_\I X X
Sketch (b)

combination Sears-Haasck-Kdrmdn ogive body of fineness ratio 11, and an
elliptic-plan-form wing of aspect ratic 2.0 with clrcular-arc sectlons
and 5-percent maximum thickness ratio. The distributions of area and
second moment of area for this basic configuration are also shown in the
sketch., The shapes of these distribution curves are not conducive to low
drag in that the area distribution has a bump at the location of the wing
and the moment-~of-area distribution is short and has steep slopes. With
the total volume fixed, the optimum shapes of the dilstribution curves (as
defined by eq. (51)) are shown by the dashed lines.2 The desired distribu-
tion of the second moment of area can be obtalned by utilizing auxiliary
2The optimum second-moment distribution is not a function of Mach :
number because it 1s derived essentially by minimizing the derivative -t
dcp/dp+ evsluated at a Mach number of one.

o s

»
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bodies. of revolution mounted on the wing as shown in the second part of
sketch (b). The arbitrarily chosen spanwise location of the suxilisry
bodies determines thelr size in that small bodies at an outboard position
can produce the same second-moment distribution as larger bodies at.an
inboard position. It 1s evident that in order to prevent an incresse in
the maximum value of the second moment of ares the auxiliary bodies must
be waisted in the vielnity of the meximum thickness of the wing. The
erea distribution may be made optimum by reshsping the body to satisfy
the requirements of the transonic area rule after the auxiliary bodies
have been added.

Tn discussing the effects of modifications it is convenient to iso-
late portions of the drag which willl not be affected by the modifications
under consideration. Congidering pressure drag only, the quantity of pri-
mary interest 1s the additional pressure drag caused by all additions to
and alterations of the original body alone. The wing and auxilliary bodies
are considered to be additions while the reshaping of the body is an
alteration. Another reason for isolating this additional pressure drag
(ACD) is that the basic assumptions of the linear theory used to calculate
ACp for configurstions with the transonic-area-rule modification may not
be violated, although the sssumptions are violated at Mach numbers near
one for the body slone (see ref. 3).

The additlonsgl pressure drag as Just defined is obbtalned by calcu-
lating the drag of a configuration consisting of the wing, the auxiliary
bodies, and the body cutout. The body cutout is taken to be a negstive
area distribution located at the position of the body surface. The calcu-
lated values of ACp for the unmodified configuration, and the configura-
tion modified according to the moment-of-sres rule asre shown in sketch (c).

¢
(16 unmodified ///’JFL\\W
012
AC area=rule _~° ™Y
D S modification
o .004 moment-of-area~ _ -
‘rule modification
0}
1.0
M
Sketeh (c)
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For compaerison, the calculated values of ACp fTor a configuration modi-

fled accarding to the transonic area rule only are alsc shown. A descrip-

tion of the methods employed in the calculations appears in Appendixes B 4
end C. The drag coefficlent is based on the total wing area Iincluding the

part of the wing hidden inside the body. It is apparent that the additian

of the auxiliary bodies to make the second-moment-of-ares distribution an .
optimum repults in large theoretical drag redictions at low supersonilc

speeds. It is to be expected that the actual drag reductions will be

somewhat less than those predicted because of the effect of friction drag .
not taken into account by the theory. :

Experiment

In order to obtain an experimental check of the theoretical predic-
tions, models of the configurations under consideration were constructed
and tested in the Ames 2- by 2-foot transonic wind tunnel at a Reynolds
number of 1.9 million based on the wing root chord.

The experimentally measured values of the total drag coefficient at
zero 1ift for the configuratlons are shown in sketch (a).

O unmodified wing-body configuration

O ares=~rule modification

{ moment~of-area~rule modification

A ynmodified body slone
.02l — ——— unmodified body alonme (calculated)

.020

.016
Cp

012

.008

.00k4
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These results confirm the predictions of the theory in that the drag
of the configuration modifled by the use of auxlllary bodies is nesrly &s
low as that for the configuration modified by the area rule slone at a
Mach number of 1.0 and is less at higher Mesch numbers. The drag of the
configuretion with suxilliary bodles is greater at subsonic speeds than
that of the other configurastions because of the larger surface area.

The drag of the ummodified body alone is alsc shown in sketch (4)
together with the predicted supersonic value which is plotted as en incre-
ment above the experimental value of drag at low speeds. The poor agree-
ment is considered to result from a reduction of sgkin friction at super-
sonic speed due to an increase in the extent of the laminar Fflow gince at

supersonic speeds the extended reglons of falling pressure are conducilve
to delay of transition to turbulent flow.

The incremental drag rises with the body drsg excluded from the
experimental and theoretical values show much better agreement as can be
seen in sketch (e).

020 ———— experiment
— — = ‘theory
016
012 k- |l\ area-rule
ACD modification
1008 —
%: unmodified
¢OOL[' —
moment~of -areg-
o [ | 1 N rule modification
.8 1.0 1.2 1.k
M
Sketeh (e)

The ACpD values were estimated from the experimental results by sub-
tracting the subsonlc drag of the configuration as well as the drag rise
of the original body alone from the total drasg of the configurestion. This
operation can be expressed ss:

86D = CDigpay - (CDtota.l b Meoue [CD‘body alone ~

<CDb°dy alone)a_b M=0c.8 ]
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or

ACD = (%Dtotal = CDpoay along) B (?Dtotal ~ Chpoay alone)at Meo.8

For the suxiliary bodles employed in the foregoing experimental
investigation, the assumption that powers of B greater than four can
be neglected in the drag formula is violaeted st Mach numbers sbhove l.l.
Hence 1t 1s expected that modlfications more effective in drag reduction
at the higher Mach mumbers can be found if this assumption is not used.
The series-expansion method for evalusting the drag can be used to design
auxiliary bodies which will minimize the pressure drag at a specified
gupersonie Mach number 1f the hlgher values of n are negleckted rather
than the higher powers of f. The result would correspond to the fuse-
lage modification for minimum drag at a specified supersonle Mach mumber
described in reference 1. ' o '

CONCLUDING REMARKS

A basic method for estimating the first-order deviations of the drag
of wing-body combinations from the values predicted by the transonic ares
rule has been derived. In & planar approximation it hass been found that
at Mach numbers gbove one the zero-lift wave drag depends on the distribu-
tions of moments of ares of the configuration about the vertilcal plane of
symmetry parallel to the free-stream directlion as well as on the area
distribution. Thus the area rule can be supplemented by what might be
termed a moment-of-area rule for extending to higher Mach numbers the
drag reductlions associgted with the use of the area rule at a Mach number
of one.

Just as 1s the case for the area rule where the longitudlinal develop-
ment of area must be smooth and gradual to minimize the drag, so also, in
application of the moment of area rule, the longlitudinal development of
the moments of area must be smooth and gradual. It has been found that
at low supersonic speeds the moment-of-area distributions of order higher
than the second are of secondary importance. Significant drag reductions
can be obtained at these speeds by mounting bodies of revolution on the
wing for the purpose of improving the gecond-moment-of-area distribution.
This point has been verified by an experiment performed in the Ames 2- by
2-Foot transonic wind tunnel.

An alternative way to visuallze the mechanisnm of drag reduction by
this means 1s to regard the auxilisry wing-mounted bodies as local
pregsure-field cancellation devices in the same sense that Jones and
Whitcomb employ the contoured principal body or fuselage to counteract
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the pressure field for the entire wing. From this point of view, it
should be expected that the auxiliary-body modificastion would be most
applicable to configurations embodying wings of relatlvely large span
where the area-rule effects would be limited because of the large dis-
tances of some of the wing elements from the fuselage.

The concept of introducing suxllisry bodies along the wing span to
effect decreases 1n wave drag promises to find importent application for
aircraft intended to carry external stores. For such aircraft, the pos-
sibllity exists of shaping the stores according to the moment of area
rule so as to obtain drag reductions at tramnsonic speeds with no friction

penalty at lower speeds.

Ames Aercnautical Leboratory
National Advisory Committee for Aeromnsutice
Moffett Field, Calif., Oct. 19, 195h4
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coefficients of PR in a power-series expansion of the

drag

coefficient of
ds(x',8,9) /ax’

sin(ng) in a Fourier series expansion of
(See eq. (2).)

m
1
coefficient of (%7é> in a power-serles expension of

d sin(ne)/sin(6)

xl
o (7,—2-)

wing aspan

(see eqs. (5) and (6).)

coefficient in a binomial expansion (See egs. (11) and

(12).)

zero-11ft wave drag

quantities Involved in evaluation of the drag
(See egs. (20}, (21), (26), (27), =nd (28).)

(See egs. (24) and (28).)

coefficient of (B cos )P
(see eqs. (17) and (18).)

An( ﬁ’q))

body length

in power-serles expansion of

length of the longitudinal distribution of second moment
of area (i.e., the length of the proJection of the wing

on the

x axis)

free-gtream Mach number

longitudinal distributlion of aree of the configuration

longitudinal distribution of moment of inertia about the

xz plane (also called the second-moment-of-area dlstri-

bution)
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Mp(o)

Mp(x)

m,n,p,q

R(x)

s(x',8,9)

+(x,¥)

v

Vp

¥

z

(x*,B,0)

yai(x? 2B59P)
Y2(x' :ﬁ:CP)

Ya(x) ,YA.(X)

Y(x)

=Ty 27

meximum value of moment of area of order p

longitudinel distribution of moment of ares of order o
(See eq. (1h).)

dummy Integers of summation

value of y at the wing-body Jjuncture

area. of the projection on the yz plane of the cross-
sectlonal ares intercepted on the configuraetion by the
Mach plene (x',B,0)

thickness distribution of the configuration including
wings and bodies

Pree-gtream velocity

pth moment volume (See eqs. (33) and (kb).)

Carteslian coordinste in the free-stream direction

Carteslan coordlinate in the spanwlse direction

Cartesien coordinate In the thickness dlrectlon

Mach plane which Intersects the x axis at x' and which
has the projection of its normel on the yz plane at an

angle ¢ to the y axls

velues of y at the points of intersection of the configu-
ration edges with the Mach plane (x',B,)

values of y at the edges of the configuration

value of .y &t the edge of a configursition with spanwise
symmetry

speed parsmeter equal to JuE Z 1

varisble related to x' by x' = % cos @

air deneity

angle between the y axis and the projection on the yz
plane of a normal to the Mach plane (x',8,p)
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APPENDIX B

DIMENSTIONLESS DRAG FORMULA

In order to teke adventage of the decrease 1in the number of parame-
ters resulting from similarity considerations, and to facilitate calcu-
lations, the quantities defined in the."ANALYSIS“ section can be made

dimensionless.

The moment-of-srea distributions defined in equation (14) can be

divided by a thickness +to &nd the helf-span b/2 raised to the (p + 1)th

power to obtain dimensionless moment distributions defined as

;

Y4(X)

T T et

Similarly, double moments occurring in equation (15) can be replaced by

Hp(x) = t(x,y)yPay  (B1)

. / 2., -
Mpx = < 2>/]:+l Mp(x)xkdx \( B2)
_7, P=1 - .

where c¢ 1is the length of the projection of the wing om the x axis.

With these definitions, a dimenslonless version of the quantities
Inp of equation (17) can be written as

n-p-2

- - o k+2 :
Inmp = Z 8npk Mpk(i‘) ’ n-p-=-220 (B3)

k=0

with the constents gupx defined as
[~

-

nﬁg—k-2 n+pik Y,
> g 2 2k 2P for even values ‘
gnpk = gn-kp = (-l) ( -p"k“2>| ko P- of (n-P-k)

L?ero otherwise

"
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Dimensionless Fourler coefficients can be defined as
n=-2 o
! _ = (pb )
By = = E= cos B
n Ptan/e An Z Inp <Z P (85)
. =0 S
- [SN TN
and An® would be written as
on-4
-~ - J
An2 = Y Hpj (ﬁ_;hi cos q:) (B6)
'j=0 ~ /
J even
where
- J
Bpy= ) fmp fa(sie) (57)
=0 o
D even P e hine e.ansicnu.u-'a EP At e
rrgpeaddle A~ eR.
Dimensionless drag com‘ponen‘b.g can be defined as
) - . pan
Bn = n L f ndo (28)
2n J,
gso that
2n-4 3
Bp=n Z Bng 33 (%) (39)
J=o
J even
where
2%
Iy == f cosdpap=—_3* 3 even (B10)
2x (o) . j 2
g
@]
Then the drag is given by
<«
2 ~
D=r E@E) Z Dn (B11)
c
D=2
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where
q = % pv2 (B12)

The following 1is a suggested computing procedure:

l. Evaluate the dimensionless double moments ﬁpk for the configu-
ration using equation (B2).

2. Choose a value of 1 equal to the length of the longest equiva-
lent body of revolution and evaluate the Inp's of equa-
tion (B3).

3. Evaluate the ﬁnj's in equation (B7) and the 5n's in equa-
tion (B9).

The dimensionless drag components 52, ﬁs, 54, and go forth, should be
evaluated separately so that the convergence with respect to n can be
watched and computing errors found more easily.

To determine which ﬁpk's are needed for each value of n the sums

can be written out proceeding in the opposite direction from that of the
computing procedure. Thus

Dy = SHao 7

a0
~ ~ ~ 2 ~ D \4
D4 =4 [H*o + ']é.' H42 (%E) + % H44 <‘§Z—> ]

Ds = 5 [ﬁso + EEL- Hsz (—7}3)2 + %ﬁ54 <%"i>‘] > (B13)

]
W
L}

v}
(4]
]

57, ete. ~

There will be (n - 1) terms in Dp for even n and (n - 2) terms for
cdd n.
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Equation (B3) indicates that the quantities Typ with p>n -2
are zero so that most of the terms in equations (B6) are zero. Conse-
quently,

- . h

Hag = (Lao)®

Bao = (La0)2

fI.-1,0 = (£4o)23 He2 = 2£4o £4a: EAA- = (£42)2

Heo = (ﬁso)z, Hep = oleo Dsz, Heq = (Ds2)2 >(Bll+)
Heo = (fe0)?, flez = 2lao Tes; Hog = (Te2)2 + 2fao Tee

Hee = olas Lecs Heg = (f-eq.)a f

ﬁm, ete. _ J

From equations (B3) and (BL)

o ~ c \2 =
Lao = Moo <T> ]
~ ~ 3
i )
~ -~ e 2 ~ ¢ % ~ ~ o 2
Lso - Moo 7)) * 1Moo T) Luz = 1Mo 7

~ ~ 3 - S o ~ 3
fso = - 1%floz (%) + 3303 (%) 5 sz = 96z (%)

)
]
o

l

(B15)
- ~ 2 ~ < - 8
IeO = 3MOO <%> - ll'8 Moz <’§-> + 80M04 <’%>
~ ~ = ~ 4
Tez = - 48 Moo (%) + 48aiop Gf-)
Les = 80M4o T
i7o, ete. J
There will be = ; P terms in f.np for even values of n end S 2 - = g -t

terme for odd n.

ECONF ENTIAL
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Since only a small number of terms are involved in ﬁn for n < 6,
these Dn's can be conveniently written out in terms of ﬁpk's ags fol-
lows:

52 = 2 [foo ()] .
a3 [ ()T
Be = 4 { [~ oo (§ + 180z (3 + [ floo () +
wdios () oo () &) + 3 [145 BT (B}
o5 { [ 2dien (5 o+ sen ) o[- 220 §F +
seios ($)] o6 GV JES + 3 [ T B} p o
Be = 6 [[3&00 (%)2 - 180, (5;-)‘ + 80y, @8]2 . [31100 @’-’ _
K8ion @“ + 8o, @]{ Wiz (T) + ¥BOM s @“K%E)z .
3o | Foo (5 - vetfes <%>4_+ Boffos (3 Jocieo (5] +
[ (5 + vt )T <81 e (-
e (§) T GBS » 35 o0 T ®)

=)
FN
]

!

Because of the_small differences between large numbers Involved in
the evaluation of Inpp for large values of n, it is probably not feasi-
ble to calculate Dp for values of n as large as may be possible with

the method of reference (1).
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APPENDIX C

ATTERNATIVE DRAG FORMULA

In reference It it is shown that bodles of revolution exist which
involve only & small number of values of n in the Fourier series expen-
sion of the gradient of the body eree distribution. Similarly, planar
configurations exist which involve only & small number of velues of n
in equation (3) when 7 in equations (1) and (B3) is allowed to vary
with polar angle ¢ and the speed parameter f. One such, a wing of
elliptic plan form and circuler-src sections, was discussed in refer-
ence 6 and was shown to have minimum drag for glven volume with elliptic
plan form,

In this Appendix the drags of a series of wings of elliptic plan form
are derived and the drag of an srbitrary plenar configuration is expressed
in terms of the elliptlc-wing drags for the purpose of including the pre-
dominant effects of spanwise extension of the wing in a small number of
terms of a series,

The double moments (Mpk) of an arbitrary plansr configuration can be
expressed in terms of double moments assocliated with an elliptic plan form
which encloses the arbitrary plan form. Then the drag of the arbitrary
configuration will be equal to the drag of the corresponding combinsation
of elliptic-wing moments.

Equations (B3) and (B5) can be combined to obbain

n-2 n-p-z2

-~ ~ 8b P k+2
Ap = E Z &npk Mpk <_7._ cos (P> <%> (c1)
P=0 k=0 ’

Taking 1 %o be the length of the equivalent body of revolution for an
elliptic plan form of span b; and maximum chord c¢; ylelds

12 = ¢12 + (Bby cos @)2

& G

Bby, 3
1+ (cl cos qJ>
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With the definition

%} = cosg O (c2)

it is found that

- P kt2 .
<% cos q:) <_CZ_1> = ginPy cosk+Zy

so that
N-2 n=p=2 -
An = }; }: énpk MYy sinfa cos¥t2g, i (c3)
pP=0c k=0 -
where

b p k+2
Mo = (=) (& M
Pk <;1 01) P

The dimensionless double moments~(ﬁimj of the elliptic lens of
reference 6 can be found by setting Ay = O for n # 2 and A, = cos2«
in equation (C3). Similarly, other wings of elliptic plan form can be
defined by setting Apn = O for n # ny and Ap, = cos®q sinPra, Label this
series of wings with the numbers n; and p;. The corresponding double
moments Mp,p,pk ©of each such wing can be found for even values of nj
and py from the relation )

N-2 . n-p-z

&npk Mnlplpksinpa cos¥y = Snnlsinpla for all (cs)
p=0 k=0 o values of a and n
P even k even - o

where

J I A for n = nj
Snn; [zero otherwise ] (c6)

Equation (C5) can only be satisfied for values of p; £ n: - 2 and 1t can
be seen that the Mnlplpk's are zero for p<p; or k<m -p -2. In
the following discussion all integers have evan values only.
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To obtaln a drag formula, the ,_ﬁ'pk's of the confilgurstion are
expressed as a combination of the Mp,p,pk's of the form

D ptk+a
M'pk = Z z Knip: Moypapk (cT)

P1=0 Ini=Pr+2

Substitution of this in equation (C3) yields
n-z n-p-2 P ptktz

An = cosZy Z Z Z Z gnpk Knip, Mn,p,pksinPa cosiy

P=0 k=0 p1=0 mpit=2

or interchange of the order of summations yields

n-2 n n-g n-p-2
Ap = cos®q S-I T Eﬂlpl V Z gnpk Mn,p; pxsinPa coske
1 et L.l
P1=0 n3=py3+2 pP=pP1 k=0, ~p-2

By the use of equation (CS5) this becomes

n-2 n
Ap = cosZy Z 2 Eanl ®pn,8inPla

P1=0 n3=pi+2

Upon completion of the summation with respect to n; the expression

n-~2

An = cosZq y ﬁnp'lsinpla (c8)
Pl:o

is obtained and can be used in the place of equation (C3) in the drag
formule if the R, 's can be found. The Rp . 's wlll be linear func-
tions of the configuretion Mpk's of the form

Py n-p=-2

Knpy = z Z Pnpipoks Mpoks (c9)
Py=0 k=0
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The quentities Enpl can be found from the terms of the con-
Piguration if the fanlP2k2 can be found, TFrom equatgons (C3)____a.nd____
(c8) 1t is fourd that o T

n-2 n-p=-2 : A2
Z Z &npk ﬁ‘pksinpa, cos¥q, = 2 Knplsinplq,
p=0 k=0 . Ppr=0 '

for 2ll « and all functioms I:I"pk. Substituting equation (C9) 41n the
right side of the above equation yilelds

-2 n-p-2 n-z n-p-z
My sinPy cos¥y ginPlg,
gnpk Mpks @ np Pk Pk

=0 k=0 | o P1-0 p=0 k—Pl'P
N=2 Nn-p-2 k+
= Z Z ﬁ'pk }P fnplkainpla-
—T
Pp=0 kl—"O Pi=p
or
n-2 n-p=2 k+p
Z Z Kok <gnpk ginPy cosby - z fnplpksinpla.>= 0
P=0c k=0 P1=p

for all a and all functions Mpk Thus

k+p
gnpksinpa. cos¥o = Z fnp,pk sinPlq for all o
P1=p '

or expansion of cosXe by the binomial theorem ylelde

p+k p1-p k k+p
Enpk E: (-1) 2. 02 _psinpla --2: fpp,pkfinPla
P1= : Pi=p

for 811 « so that
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=

Pa-p k

5 A2
fnppx = (-1) Cp,-p Enpk (c10)
)

Substituting equations (12) and (BY) in this equation yilelds

—p3 -k- mpHk Y,
frpapk = (-1) = ( ) ikl (s/2) (c11)

() ™™ ey

for even values of the integers.

For odd values of n; and even p3 the_ﬁnlplpk's are defined by

n-s n-p-z

}: E: Enpk ﬁnlplpksinpa cogk-la = Bnn, sinPle (c12)
p=0 k=1
p even

and by a similer process

n-3
An = cosq, }; KnpsinPa (c13)
=0 '
n=po=-2
Knpl = Z Z fnplp2k2 M'p2k2 (Cl}-l-)

Po=0  ko=pi-Pzti

- k-1

2
fopypk = (-1) © Cp,-p Snpk (c15)
2

for odd values of n and k.
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Since the dimensionless drag components are glven by

25

B = o= f n E,%ap
£
o]
integrals of the type
b J b J
1 fzrr (ﬁc_lL cos q:) 1 e %il-. cos (p)

do, de
2n +4 2%
° [l + <—E;b:' cos Cp>2:ll2— © [1 + <-%-hf~ cos cp)z:l%g

are encountered and have been evaluated by means of & method of residue
integration and differentiation with respect to parameters.

In summary, the drag of en arbitrary closed planar configuration wilth
spanwise symmetry can be evaluated by means of the following formules:

D= nq <to %)2 i Dn (c16)

ns=z
[ 2n-4 . o -
n 2 ﬁnj I3 I <—i&ll) for even n
J=0 '
J even
Dy = (c17)
on-6
n Z En,j Jj Q-j <Ecbf‘~> for odd n
J:‘.O
| J even "

Iy = J: for even J (c18)
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oy B LEE
Clo
[+ (Y ]"%9
Ci
(&)‘j [1 .2 Bb1)2 . 3 Bby \*
(Bby ca1 J+2 \ e1 (j+2) (g+4) \ ez
J C:L) = 3+ 5 (c20)
{1 . (Eb_l> ]—2—
ci
3
Z Knp ¥n(3-p) : (ca1)
p=0
D even
r— P N-psc~-2 T
y Z Tnppok Fﬂpzkz for even n
D=0 ko=p-p2
Po even ks even
Knp = (c22)
P n-pg-2
Z Z fnppoky Mpox,  for odd n
pz=0 ko=p-pstl
p even ks, odd __J
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ko
B nipatkp <¥é>£
( )E:.E_;_k.a:E 2 ) S(patke) 2
~L T T
for even n and even kg
(c23)
foppoky =
n+potko ko=-1
2p-kp2 < 2 )’ o{P=rka) ( > )
(-2) nepo-ko-2Y, P22t A oo -
() T Geapir)
2
for cdd n and odd ko
L_.E_e:n'o otherwise ]
Mooks = Mpoky (’EI) (E—))
cak
ﬁ o 1 C/2 y4(x) ? ( )
MOBEOMEE

In equation (C2k) t(x,y) 1s the configuration thickness distribution,

b; and c¢; are the span and maximum chorgd, respectively, of an ellipse
whlch completely encloses the configuration, b is the wing span, and e
is the streamwise length of the wing,



NACA RM A5LJ19 b1

The first five values of ﬁn gre given by

Do = 2(Moo) 2 Io <ﬁ_b.1> I
c1
Ds = 3(#'62)? Qo <3b1>
5‘ N h[(leﬁloz - oo)® To <%> * (1371-02 - 2\1~'00) (12"2'20 -
18f52) I (—B;bl> + % (1aMoy - 180,,)2 T, (&):l
c1 C1
Ds = 5[(332'03 - 12W61)% Qg %) + (33l ~ 12M'G) (96‘4.'21_. -
os) Qz <§E%> (9621 - 32!03) Qa <?E%)J
>(c25)

B = 6 {(aoﬁvm - Wity + Foo)? To (E22) + (B0ito, - i, +
o) (480HI,, - 160M'n, + Mfom - 4BH'zo) I (,Bg
%[z(sof&'o‘ - 48Ny, + 3Moo) (BQMoe - LSOM',, + 80Mi.) +
(460 pn - 160M, + Mion - 48HHa0)2] I, (E_'DT>+

%(haoﬁ'zz - 160Mye + L8M'on - LBM'ao) (80M'oe - L4BOM'oo +

80 o) Ts (%) + 33555 (80fi'g, - 480M.o + BOM'2p)2 Ig (%'t;_l)b

The convergence wilth respect to n 1is best when the smallest possi-
ble ellipse is used. The theoretical drag curves in sketch (e) were cal-
culeted by dividing the configuration into parts of short, long, and
Intermediate length so that smaller elllpses could be used for the shorter
parts. The drags of these three parts end thelr interactions were calcu-
lated using values of n up to 6 in the formulas of this Appendix, The
body moments in the region of the body cutouis were found tc be important
and were taken into account using a quasi-cylindricsal epproximation to
find an equlvalent plenar system neglecting induced camber effects,
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